Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 13(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667046

RESUMO

This systematic review and meta-analysis investigates the prevalence of Vibrio parahaemolyticus, its virulence factors, antimicrobial resistance (AMR), and its resistance determinants in shrimp. This study was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, to identify and select relevant peer-reviewed articles published between January 2020 and December 2022. The search strategy involved multiple online databases, including Google Scholar, PubMed, ScienceDirect, and Scopus. The inclusion criteria focused on studies that examined V. parahaemolyticus prevalence, virulence factors, and AMR in shrimp from farms to retail outlets. A total of 32 studies were analyzed, revealing a pooled estimate prevalence of V. parahaemolyticus in shrimp at 46.0%, with significant heterogeneity observed. Subgroup analysis highlighted varying prevalence rates across continents, emphasizing the need for further investigation. Virulence factor analysis identified thermostable direct hemolysin (tdh) and tdh-related hemolysin (trh) as the most common. Phenotypic AMR analysis indicated notable resistance to glycopeptides, nitrofurans, and beta-lactams. However, the correlation between antimicrobial usage in shrimp farming and observed resistance patterns was inconclusive. Funnel plots suggested potential publication bias, indicating a need for cautious interpretation of findings. This study underscores the urgency of coordinated efforts to address AMR in V. parahaemolyticus to safeguard public health and to ensure sustainable aquaculture practices.

2.
Antibiotics (Basel) ; 11(12)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36551345

RESUMO

The occurrence of waterborne antimicrobial-resistant (AMR) bacteria in areas of high-density oyster cultivation is an ongoing environmental and public health threat given the popularity of shellfish consumption, water-related human recreation throughout coastal Thailand, and the geographical expansion of Thailand's shellfish industry. This study characterized the association of phenotypic and genotypic AMR, including extended-spectrum ß-lactamase (ESBL) production, and virulence genes isolated from waterborne Escherichia coli (E. coli) (n = 84), Salmonella enterica (S. enterica) subsp. enterica (n = 12), Vibrio parahaemolyticus (V. parahaemolyticus) (n = 249), and Vibrio cholerae (V. cholerae) (n = 39) from Thailand's coastal aquaculture regions. All Salmonella (100.0%) and half of V. cholerae (51.3%) isolates harbored their unique virulence gene, invA and ompW, respectively. The majority of isolates of V. parahaemolyticus and E. coli, ~25% of S. enterica subsp. enterica, and ~12% of V. cholerae, exhibited phenotypic AMR to multiple antimicrobials, with 8.9% of all coastal water isolates exhibiting multidrug resistance (MDR). Taken together, we recommend that coastal water quality surveillance programs include monitoring for bacterial AMR for food safety and recreational water exposure to water for Thailand's coastal water resources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...